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Tasks for Deep Neural Networks

We use Deep Neural Networks for specific group of issues:
• Classification (of images, signals etc.)

• Prediction (e.g. price, temperature, size, distance)

• Recognition (of speech, objects etc.)

• Translation (from one language to another)

• Autonomous behaviors (driving by the autonomous cars, flying of the drones…)

• Clustering of objects (grouping them according to their similarity)

• etc.

using supervised or unsupervised training of such networks.

We have to deal with structures and unstructured data:
Structured data are usually well-described by the attributes and 
collected in data tables (relational databases), while unstructured data 
are images, (audio, speech) signals, (sequences of) texts (corpora).
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Binary Classification

In binary classification, the result is describe by two values:

• 1 – when the object of the class was recognized (e.g. is a cat),

• 0 – when the object was not recognized as belonging to the given class (e.g. is not a cat).

Example:

Is a cat (1)

Is not a cat (0)
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Image Representation
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Training Examples
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Logistic Regression
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Computing Sigmoid Function

We use numpy vectorization to compute sigmoid and sigmoid_derivative 
for any input vector z:
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Logistic Regression Cost Function
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Loss Functions

The loss functions are used to evaluate the performance of the models. The bigger your loss 
is, the more different your predictions (𝑦 ̂) are from the true values (𝑦). In deep learning, 
we use optimization algorithms like Gradient Descent to train models and minimize the 
cost.
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Gradient Descent

We have to minimize the cost function J for a given training data set 
to achieve as correct prediction for input data as possible:

Here, w is 1D, but its dimension is bigger in real.
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Calculus of the Gradient Descent

The main idea of the Gradient Descent algorithm is to go 
in the reverse direction to the gradient (the descent slope):
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Derivative Rules

The Gradient Descent algorithm
uses partial derivatives calculated
after the following rules:
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Gradient Descent for Logistic Regression

We use a computational graph for the presentation of forward and backward operations for 
a single neuron implementing logistic regression for the weighted sum of inputs x:
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Gradient Descent for Training Dataset

The final logistic regression gradient descent 
algorithm will repeatedly go through 
all training examples updating parameters 
until the cost function is not small enough:

To speed up computation we should use 
vectorization instead of for-loops:
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Efficiency of Vectorization

When dealing with big data collections and big data vectors, we definitely should 
use vectorization (that performs SIMD operations) to proceed computations faster:

Conclusion:
Whenever possible, avoid explicit for-loops and use vectorization: np.dot(w.T,x), np.dot(W,x), np.multiply(x1,x2), 

np.outer(x1,x2), np.log(v), np.exp(v), np.abs(v), np.zeros(v), np.sum(v), np.max(v), np.min(v) etc.

Vectorization uses parallel CPU or GPU operations (called SIMD – single instruction multiple data) 

proceed on parallelly working cores.

Compare time efficacies of these two approaches!
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Vectorization of the Logistic Regression

Let’s vectorize the previous algorithm:

broadcasted
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Broadcasting in Python
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Broadcasting in numpy

Broadcasting is very useful for performing mathematical operations between 
arrays of different shapes. The example below show the normalization of the data.

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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Normalization for Efficiency

We use normalization (np.linalg.norm) to achieve a better performance because 
gradient descent converges faster after normalization:
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Lists vs. Vectors and Matrices

Be careful when creating vectors 
because lists have no shape and 
are declared similarly.
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Column and Row Vectors

Be careful when creating vectors 
because lists have no shape and 
are declared similarly.
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Reshaping Image Matrices

When working with images in deep learning, we typically reshape them into vector 
representation using np.reshape():

https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
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Shape and Reshape Vectors and Matrices

We commonly use the numpy functions np.shape() and np.reshape() in deep learning:

• X.shape is used to get the shape (dimension) of a vector or a matrix X.

• X.reshape(...) is used to reshape a vector or a matrix X into some other dimension(s).

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
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Simple Neuron

We defined the 
fundamental 
elements and 
operations on a 
single neuron.
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Simple Neural Network

Having defined 
the fundamental 
elements and 
operations, 
we can create 
a simple neural 
network.
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Stacking Neurons Vertically and Vectorizing

Stacking values and creating 
vectors, and stacking vectors 
and creating matrices is very 
important from the efficiency 
of computation point of view!
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Stacking Examples Horizontally and Vectorizing

Stacking vectors of training 
examples horizontally creating 
matrices is very important 
from the efficiency of 
computation point of view!

After Vectorizing
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Vectorization of Dot Product

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become 
a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that 
your code is computationally efficient, you should use vectorization. Compare the following codes:
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Vectorization of Outer Product

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become 
a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that 
your code is computationally efficient, you should use vectorization. Compare the following codes:
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Vectorization of Element-Wise Multiplication

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become 
a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that 
your code is computationally efficient, you should use vectorization. Compare the following codes:
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Vectorization of General Dot Product

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become 
a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that 
your code is computationally efficient, you should use vectorization. Compare the following codes:
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Activation Functions of Neurons

We use different activation functions for neurons in different layers:

COMPARISON OF ACTIVATION FUNCTIONS

• Sigmoid function is used
in the output layer:

𝒈 𝒛 = 𝝈 𝒛 =
𝟏

𝟏+𝒆−𝒛

• Tangent hyperbolic function
is used in hidden layers:

𝒈 𝒛 = 𝒕𝒂𝒏𝒉 𝒛 =
𝒆𝒛−𝒆−𝒛

𝒆𝒛+𝒆−𝒛

• Rectified linear unit (ReLu)
is used in hidden layers (FAST!):

𝒈 𝒛 = 𝑹𝒆𝑳𝒖 𝒛 = 𝒎𝒂𝒙 𝟎, 𝒛

• Smooth ReLu (SoftPlus)
is used in hidden layers:

𝒈 𝒛 = 𝑺𝒐𝒇𝒕𝑷𝒍𝒖𝒔 𝒛 = 𝒍𝒐𝒈 𝟏 + 𝒆𝒛

• Leaky ReLu is used in hidden layers :

• 𝒈 𝒛 = 𝑳𝒆𝒂𝒌𝒚𝑹𝒆𝑳𝒖 𝒛 = ቊ
𝒛 𝒊𝒇 𝒛 > 𝟎
𝟎. 𝟎𝟏𝒛 𝒊𝒇 𝒛 ≤ 𝟎
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Activation Functions
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Derivatives of Activation Functions

Derivatives are necessary for
the use of gradient descent:

• Sigmoid function:

𝒈 𝒛 = 𝝈 𝒛 =
𝟏

𝟏+𝒆−𝒛
𝒈′ 𝒛 =

𝒅𝒈 𝒛

𝒅𝒛
= 𝒈 𝒛 ∙ 𝟏 − 𝒈 𝒛 = 𝒂 ∙ 𝟏 − 𝒂

• Tangent hyperbolic function:

𝒈 𝒛 = 𝒕𝒂𝒏𝒉 𝒛 =
𝒆𝒛−𝒆−𝒛

𝒆𝒛+𝒆−𝒛
𝒈′ 𝒛 =

𝒅𝒈 𝒛

𝒅𝒛
= 𝟏 − 𝒈 𝒛

𝟐
= 𝟏 − 𝒂𝟐

• Rectified linear unit (ReLu):

𝒈 𝒛 = 𝑹𝒆𝑳𝒖 𝒛 = 𝒎𝒂𝒙 𝟎, 𝒛 𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
= ቊ

𝟏 𝒊𝒇 𝒛 > 𝟎
𝟎 𝒊𝒇 𝒛 ≤ 𝟎

• Smooth ReLu (SoftPlus):

𝒈 𝒛 = 𝑺𝒐𝒇𝒕𝑷𝒍𝒖𝒔 𝒛 = 𝒍𝒏 𝟏 + 𝒆𝒛 𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
=

𝒆𝒛

𝟏+𝒆𝒛
=

𝟏

𝟏+𝒆−𝒛

• Leaky ReLu:

𝒈 𝒛 = 𝑳𝒆𝒂𝒌𝒚𝑹𝒆𝑳𝒖 𝒛 = ቊ
𝒛 𝒊𝒇 𝒛 > 𝟎
𝟎. 𝟎𝟏𝒛 𝒊𝒇 𝒛 ≤ 𝟎

𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
= ቊ

𝟏 𝒊𝒇 𝒛 > 𝟎
𝟎. 𝟎𝟏 𝒊𝒇 𝒛 ≤ 𝟎

http://home.agh.edu.pl/~horzyk/index-eng.php


Derivatives of Activation Functions
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Neural Network Gradients
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Random Initialization of Weights

Parameters must be initialized by small random numbers:
• W cannot be initialized to 0:

• 𝑾[𝒍] = 𝒏𝒑. 𝒓𝒂𝒏𝒅𝒐𝒎. 𝒓𝒂𝒏𝒅𝒏 𝒏[𝒍], 𝒏[𝒍−𝟏] ∗ 𝟎. 𝟎𝟏

• Small random initial weights values of the weights allow for faster training 
because the activation functions of neurons stimulated by values a little bit 
greater than 0 usually have the biggest slopes, so each update of weights results 
in big changes of output values and allows the network to move towards the 
solution faster.

• b can be initialized to 0:

• 𝒃[𝒍] = 𝒏𝒑. 𝒛𝒆𝒓𝒐 𝒏[𝒍], 𝟏
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Going to Deeper NN Architectures

Deep neural 
network 
architecture means 
the use of many 
hidden layers 
between input and 
output layers.
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Dimensions of Stacked Matrices
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Building Blocks of Deep Neural Networks
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Stacking Building Blocks Subsequently
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Parameters and Hyperparameters

We should distinguish between parameters and hyperparameters:

• Parameters of the model are established during the training process, e.g.:

• 𝑾[𝒍], 𝒃[𝒍].

• Hyperparameters control parameters and are established by the developer of 
the model, e.g.:

• 𝜶 – learning rate,

• 𝑳 – number of hidden layers,

• 𝒏[𝒍] - number of neurons in layers,

• 𝒈[𝒍] - choice of activation functions for layers,

• number of iterations over training data,

• momentum,

• minibatch size, 

• regularization parameters,

• optimization parameters,

• dropout parameters, …
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Iterative Development of DL Solutions

Deep Learning solutions are usually developed in an iterative 
and empirical process that composes of three main elements:
• Idea – when we suppose that a selected model, training method, and some 

hyperparameters let us to solve the problem.

• Code – when we try to code and apply the idea in a real code.

• Experiment – prove our suppositions and assumptions or not, and allow to 
update or change the idea until the experiments return satisfactory results.
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Let’s start with powerful computations!
✓ Questions?

✓ Remarks?

✓ Suggestions?

✓ Wishes?
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