
AGH University of
Science and Technology

Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl

Tasks for Deep Neural Networks

We use Deep Neural Networks for specific group of issues:
• Classification (of images, signals etc.)

• Prediction (e.g. price, temperature, size, distance)

• Recognition (of speech, objects etc.)

• Translation (from one language to another)

• Autonomous behaviors (driving by the autonomous cars, flying of the drones…)

• Clustering of objects (grouping them according to their similarity)

• etc.

using supervised or unsupervised training of such networks.

We have to deal with structures and unstructured data:
Structured data are usually well-described by the attributes and
collected in data tables (relational databases), while unstructured data
are images, (audio, speech) signals, (sequences of) texts (corpora).

http://home.agh.edu.pl/~horzyk/index-eng.php

Binary Classification

In binary classification, the result is describe by two values:

• 1 – when the object of the class was recognized (e.g. is a cat),

• 0 – when the object was not recognized as belonging to the given class (e.g. is not a cat).

Example:

Is a cat (1)

Is not a cat (0)

http://home.agh.edu.pl/~horzyk/index-eng.php

Image Representation

http://home.agh.edu.pl/~horzyk/index-eng.php

Training Examples

http://home.agh.edu.pl/~horzyk/index-eng.php

Logistic Regression

http://home.agh.edu.pl/~horzyk/index-eng.php

Computing Sigmoid Function

We use numpy vectorization to compute sigmoid and sigmoid_derivative
for any input vector z:

http://home.agh.edu.pl/~horzyk/index-eng.php

Logistic Regression Cost Function

http://home.agh.edu.pl/~horzyk/index-eng.php

Loss Functions

The loss functions are used to evaluate the performance of the models. The bigger your loss
is, the more different your predictions (𝑦 ̂) are from the true values (𝑦). In deep learning,
we use optimization algorithms like Gradient Descent to train models and minimize the
cost.

http://home.agh.edu.pl/~horzyk/index-eng.php

Gradient Descent

We have to minimize the cost function J for a given training data set
to achieve as correct prediction for input data as possible:

Here, w is 1D, but its dimension is bigger in real.

http://home.agh.edu.pl/~horzyk/index-eng.php

Calculus of the Gradient Descent

The main idea of the Gradient Descent algorithm is to go
in the reverse direction to the gradient (the descent slope):

http://home.agh.edu.pl/~horzyk/index-eng.php
https://www.onlinemathlearning.com/derivative-rules.html

Derivative Rules

The Gradient Descent algorithm
uses partial derivatives calculated
after the following rules:

http://home.agh.edu.pl/~horzyk/index-eng.php
https://www.onlinemathlearning.com/derivative-rules.html
https://www.onlinemathlearning.com/derivative-rules.html

Gradient Descent for Logistic Regression

We use a computational graph for the presentation of forward and backward operations for
a single neuron implementing logistic regression for the weighted sum of inputs x:

http://home.agh.edu.pl/~horzyk/index-eng.php

Gradient Descent for Training Dataset

The final logistic regression gradient descent
algorithm will repeatedly go through
all training examples updating parameters
until the cost function is not small enough:

To speed up computation we should use
vectorization instead of for-loops:

http://home.agh.edu.pl/~horzyk/index-eng.php

Efficiency of Vectorization

When dealing with big data collections and big data vectors, we definitely should
use vectorization (that performs SIMD operations) to proceed computations faster:

Conclusion:
Whenever possible, avoid explicit for-loops and use vectorization: np.dot(w.T,x), np.dot(W,x), np.multiply(x1,x2),

np.outer(x1,x2), np.log(v), np.exp(v), np.abs(v), np.zeros(v), np.sum(v), np.max(v), np.min(v) etc.

Vectorization uses parallel CPU or GPU operations (called SIMD – single instruction multiple data)

proceed on parallelly working cores.

Compare time efficacies of these two approaches!

http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of the Logistic Regression

Let’s vectorize the previous algorithm:

broadcasted

http://home.agh.edu.pl/~horzyk/index-eng.php

Broadcasting in Python

http://home.agh.edu.pl/~horzyk/index-eng.php

Broadcasting in numpy

Broadcasting is very useful for performing mathematical operations between
arrays of different shapes. The example below show the normalization of the data.

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
http://home.agh.edu.pl/~horzyk/index-eng.php

Normalization for Efficiency

We use normalization (np.linalg.norm) to achieve a better performance because
gradient descent converges faster after normalization:

http://home.agh.edu.pl/~horzyk/index-eng.php

Lists vs. Vectors and Matrices

Be careful when creating vectors
because lists have no shape and
are declared similarly.

http://home.agh.edu.pl/~horzyk/index-eng.php

Column and Row Vectors

Be careful when creating vectors
because lists have no shape and
are declared similarly.

http://home.agh.edu.pl/~horzyk/index-eng.php

Reshaping Image Matrices

When working with images in deep learning, we typically reshape them into vector
representation using np.reshape():

https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
http://home.agh.edu.pl/~horzyk/index-eng.php

Shape and Reshape Vectors and Matrices

We commonly use the numpy functions np.shape() and np.reshape() in deep learning:

• X.shape is used to get the shape (dimension) of a vector or a matrix X.

• X.reshape(...) is used to reshape a vector or a matrix X into some other dimension(s).

https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.shape.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.reshape.html
http://home.agh.edu.pl/~horzyk/index-eng.php

Simple Neuron

We defined the
fundamental
elements and
operations on a
single neuron.

http://home.agh.edu.pl/~horzyk/index-eng.php

Simple Neural Network

Having defined
the fundamental
elements and
operations,
we can create
a simple neural
network.

http://home.agh.edu.pl/~horzyk/index-eng.php

Stacking Neurons Vertically and Vectorizing

Stacking values and creating
vectors, and stacking vectors
and creating matrices is very
important from the efficiency
of computation point of view!

http://home.agh.edu.pl/~horzyk/index-eng.php

Stacking Examples Horizontally and Vectorizing

Stacking vectors of training
examples horizontally creating
matrices is very important
from the efficiency of
computation point of view!

After Vectorizing

http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of Dot Product

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become
a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that
your code is computationally efficient, you should use vectorization. Compare the following codes:

http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of Outer Product

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become
a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that
your code is computationally efficient, you should use vectorization. Compare the following codes:

http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of Element-Wise Multiplication

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become
a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that
your code is computationally efficient, you should use vectorization. Compare the following codes:

http://home.agh.edu.pl/~horzyk/index-eng.php

Vectorization of General Dot Product

In deep learning, you deal with very large datasets. Non-computationally-optimal functions become
a huge bottleneck in your algorithms and can result in models that take ages to run. To make sure that
your code is computationally efficient, you should use vectorization. Compare the following codes:

http://home.agh.edu.pl/~horzyk/index-eng.php

Activation Functions of Neurons

We use different activation functions for neurons in different layers:

COMPARISON OF ACTIVATION FUNCTIONS

• Sigmoid function is used
in the output layer:

𝒈 𝒛 = 𝝈 𝒛 =
𝟏

𝟏+𝒆−𝒛

• Tangent hyperbolic function
is used in hidden layers:

𝒈 𝒛 = 𝒕𝒂𝒏𝒉 𝒛 =
𝒆𝒛−𝒆−𝒛

𝒆𝒛+𝒆−𝒛

• Rectified linear unit (ReLu)
is used in hidden layers (FAST!):

𝒈 𝒛 = 𝑹𝒆𝑳𝒖 𝒛 = 𝒎𝒂𝒙 𝟎, 𝒛

• Smooth ReLu (SoftPlus)
is used in hidden layers:

𝒈 𝒛 = 𝑺𝒐𝒇𝒕𝑷𝒍𝒖𝒔 𝒛 = 𝒍𝒐𝒈 𝟏 + 𝒆𝒛

• Leaky ReLu is used in hidden layers :

• 𝒈 𝒛 = 𝑳𝒆𝒂𝒌𝒚𝑹𝒆𝑳𝒖 𝒛 = ቊ
𝒛 𝒊𝒇 𝒛 > 𝟎
𝟎. 𝟎𝟏𝒛 𝒊𝒇 𝒛 ≤ 𝟎

http://home.agh.edu.pl/~horzyk/index-eng.php

Activation Functions

http://home.agh.edu.pl/~horzyk/index-eng.php

Derivatives of Activation Functions

Derivatives are necessary for
the use of gradient descent:

• Sigmoid function:

𝒈 𝒛 = 𝝈 𝒛 =
𝟏

𝟏+𝒆−𝒛
𝒈′ 𝒛 =

𝒅𝒈 𝒛

𝒅𝒛
= 𝒈 𝒛 ∙ 𝟏 − 𝒈 𝒛 = 𝒂 ∙ 𝟏 − 𝒂

• Tangent hyperbolic function:

𝒈 𝒛 = 𝒕𝒂𝒏𝒉 𝒛 =
𝒆𝒛−𝒆−𝒛

𝒆𝒛+𝒆−𝒛
𝒈′ 𝒛 =

𝒅𝒈 𝒛

𝒅𝒛
= 𝟏 − 𝒈 𝒛

𝟐
= 𝟏 − 𝒂𝟐

• Rectified linear unit (ReLu):

𝒈 𝒛 = 𝑹𝒆𝑳𝒖 𝒛 = 𝒎𝒂𝒙 𝟎, 𝒛 𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
= ቊ

𝟏 𝒊𝒇 𝒛 > 𝟎
𝟎 𝒊𝒇 𝒛 ≤ 𝟎

• Smooth ReLu (SoftPlus):

𝒈 𝒛 = 𝑺𝒐𝒇𝒕𝑷𝒍𝒖𝒔 𝒛 = 𝒍𝒏 𝟏 + 𝒆𝒛 𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
=

𝒆𝒛

𝟏+𝒆𝒛
=

𝟏

𝟏+𝒆−𝒛

• Leaky ReLu:

𝒈 𝒛 = 𝑳𝒆𝒂𝒌𝒚𝑹𝒆𝑳𝒖 𝒛 = ቊ
𝒛 𝒊𝒇 𝒛 > 𝟎
𝟎. 𝟎𝟏𝒛 𝒊𝒇 𝒛 ≤ 𝟎

𝒈′ 𝒛 =
𝒅𝒈 𝒛

𝒅𝒛
= ቊ

𝟏 𝒊𝒇 𝒛 > 𝟎
𝟎. 𝟎𝟏 𝒊𝒇 𝒛 ≤ 𝟎

http://home.agh.edu.pl/~horzyk/index-eng.php

Derivatives of Activation Functions

http://home.agh.edu.pl/~horzyk/index-eng.php

Neural Network Gradients

http://home.agh.edu.pl/~horzyk/index-eng.php

Random Initialization of Weights

Parameters must be initialized by small random numbers:
• W cannot be initialized to 0:

• 𝑾[𝒍] = 𝒏𝒑. 𝒓𝒂𝒏𝒅𝒐𝒎. 𝒓𝒂𝒏𝒅𝒏 𝒏[𝒍], 𝒏[𝒍−𝟏] ∗ 𝟎. 𝟎𝟏

• Small random initial weights values of the weights allow for faster training
because the activation functions of neurons stimulated by values a little bit
greater than 0 usually have the biggest slopes, so each update of weights results
in big changes of output values and allows the network to move towards the
solution faster.

• b can be initialized to 0:

• 𝒃[𝒍] = 𝒏𝒑. 𝒛𝒆𝒓𝒐 𝒏[𝒍], 𝟏

http://home.agh.edu.pl/~horzyk/index-eng.php

Going to Deeper NN Architectures

Deep neural
network
architecture means
the use of many
hidden layers
between input and
output layers.

http://home.agh.edu.pl/~horzyk/index-eng.php

Dimensions of Stacked Matrices

http://home.agh.edu.pl/~horzyk/index-eng.php

Building Blocks of Deep Neural Networks

http://home.agh.edu.pl/~horzyk/index-eng.php

Stacking Building Blocks Subsequently

http://home.agh.edu.pl/~horzyk/index-eng.php

Parameters and Hyperparameters

We should distinguish between parameters and hyperparameters:

• Parameters of the model are established during the training process, e.g.:

• 𝑾[𝒍], 𝒃[𝒍].

• Hyperparameters control parameters and are established by the developer of
the model, e.g.:

• 𝜶 – learning rate,

• 𝑳 – number of hidden layers,

• 𝒏[𝒍] - number of neurons in layers,

• 𝒈[𝒍] - choice of activation functions for layers,

• number of iterations over training data,

• momentum,

• minibatch size,

• regularization parameters,

• optimization parameters,

• dropout parameters, …

http://home.agh.edu.pl/~horzyk/index-eng.php

Iterative Development of DL Solutions

Deep Learning solutions are usually developed in an iterative
and empirical process that composes of three main elements:
• Idea – when we suppose that a selected model, training method, and some

hyperparameters let us to solve the problem.

• Code – when we try to code and apply the idea in a real code.

• Experiment – prove our suppositions and assumptions or not, and allow to
update or change the idea until the experiments return satisfactory results.

http://home.agh.edu.pl/~horzyk/index-eng.php

Let’s start with powerful computations!
✓ Questions?

✓ Remarks?

✓ Suggestions?

✓ Wishes?

http://home.agh.edu.pl/~horzyk/index-eng.php

Bibliography and Literature
1. Nikola K. Kasabov, Time-Space, Spiking Neural Networks and Brain-Inspired Artificial

Intelligence, In Springer Series on Bio- and Neurosystems, Vol 7., Springer, 2019.

2. Ian Goodfellow, Yoshua Bengio, Aaron Courville, Deep Learning, MIT Press, 2016, ISBN 978-
1-59327-741-3 or PWN 2018.

3. Holk Cruse, Neural Networks as Cybernetic Systems, 2nd and revised edition

4. R. Rojas, Neural Networks, Springer-Verlag, Berlin, 1996.

5. Convolutional Neural Network (Stanford)

6. Visualizing and Understanding Convolutional Networks, Zeiler, Fergus, ECCV 2014

7. IBM: https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-
1/index.html

8. NVIDIA: https://developer.nvidia.com/discover/convolutional-neural-network

9. JUPYTER: https://jupyter.org/

University of Science
and Technology

in Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

Google: Horzyk

file:///C:/Users/Adrian/Downloads/bmm615.pdf
https://page.mi.fu-berlin.de/rojas/neural/neuron.pdf
http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/
https://arxiv.org/abs/1311.2901
https://www.ibm.com/developerworks/library/ba-data-becomes-knowledge-1/index.html
https://developer.nvidia.com/discover/convolutional-neural-network
https://jupyter.org/
http://home.agh.edu.pl/~horzyk/index-eng.php
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

